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Abstract. Nucleation of superconductivity and vortex patterns have been studied in mesoscopic samples
providing the crossover between square and rectangular geometries. The measured nucleation line, Tc(H),
has been analyzed in the framework of the linearized Ginzburg-Landau theory. A very good agreement has
been found between the theoretical Tc(H) boundary and the experimental data for rectangles with different
aspect ratios. The superconductor/ferromagnet hybrids, such as magnetic Co/Pd dot in a superconducting
loop and the dot on top of a superconducting disk have also been investigated. Pronounced effects of the
dot on the Tc(H) boundary have been found, including strong asymmetry with respect to the field polarity.

PACS. 74.25.Dw Superconductivity phase diagrams – 74.78.Na Mesoscopic and nanoscale systems

1 Introduction

Superconductivity is a remarkable example of macroscopic
quantum phenomena: the condensate of the Cooper pairs,
even in large samples, is described by the complex or-
der parameter Ψ = |Ψ | eiφ obeying the Ginzburg-Landau
(GL) equations. This is very much like in quantum sys-
tems where the wave function Ψ is obeying the Schrödinger
equation. Interestingly, the linearized GL equation practi-
cally coincides with the Schrödinger equation without po-
tential U(−→r ), provided that instead of the single electron
charge e the charge 2e of the Cooper pair is used and also
the eigenvalue E in the Schrödinger equation is replaced
by the first GL parameter, −α, here −α = �

2/2m∗ξ2(T )
with ξ(T ) the temperature dependent coherence length.

The behavior of the superconducting condensate, con-
fined by the sample boundaries, can be compared with a
quantum-mechanical problem ‘particle in a box’. By vary-
ing the size and the shape of the box, its quantum levels
can be substantially modified. Along the same lines, nu-
cleation of superconductivity and vortex patterns can be
tuned in superconducting samples by varying their size
and geometry [1]. The effects of the sample size, geom-
etry and topology on the flux and condensate confine-
ment have been very intensively studied during the last
decade [2–8]. Single nanoplaquettes (discs, squares, tri-
angles, loops, etc.) [9–15] their clusters [16–18] and huge
arrays [19–21] were investigated.
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As it is clearly seen from the cited references, several
Spanish groups have been actively working in this field,
which nicely fits the main idea behind this special issue.
In our manuscript we present the data on the crossover be-
tween the square and the rectangular geometry of individ-
ual plaquettes and on hybrid superconductor/ferromagnet
structures. We have studied the effects of the sample size
and geometry on vortex patterns and nucleation of super-
conductivity in these systems.

2 Rectangles

2.1 Theory

The nucleation of superconductivity is described by the
linearized Ginzburg-Landau (LGL) equation [22]:
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− 2eA
)
Ψ = −αΨ , (1)

where A is the vector potential corresponding to the
applied magnetic field. Together with the superconduc-
tor/vacuum boundary condition [23]:

(
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)
Ψ
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n

= 0 , (2)

where the subscript n means the normal component at the
boundary line, the problem is then fully defined.
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Fig. 1. Lowest two eigenvalues of the LGL equation for the
mesoscopic rectangle for different aspect ratios, as a function
of magnetic flux Φ/Φ0, with superconductor-vacuum bound-
ary conditions. The flux is defined as Φ = µ0HS, with S the
surface of the rectangle, µ0H the applied magnetic field and
Φ0 = h/2e the superconducting flux quantum. Along the verti-
cal axis the critical temperature Tc is linearly decreasing with
increasing S/ξ2(T ).

However, solving these equations for arbitrary geome-
tries poses a considerable problem, due to the presence of
the vector potential in equation (2). Nevertheless we have
been able to simplify the problem significantly by intro-
ducing a vector potential gauge for regular polygons [24]
with a zero normal component to the boundary line. Sub-
sequently the boundary condition reduces to the Neumann
boundary condition:

∇Ψ |n = 0 . (3)

This choice of vector potential together with a basis set
obeying the Neumann boundary conditions, allows us to
redefine the problem as an eigenvalue problem. For the
basis set we have taken the eigenfunctions of the zero
field problem. Moreover, due to the rotational symmetry
of the considered problems, the solutions of the LGL equa-
tion (1) can be characterized by the irreducible represen-
tations (irreps) of the corresponding symmetry group. For
instance, in the case of a rectangle, which has a C2 sym-
metry, the group contains two irreps A and B [25,15].

The solutions corresponding to irrep A and B have re-
spectively no vortex, and one vortex in the center of the
rectangle. However an exception is formed by the square
which is a rectangle with aspect ratio ζ = 1. Consequently
the appropriate symmetry group is C4. We then have so-
lutions corresponding to irreps A, B, E+ and E− which
have respectively no vortex, a giant 2Φ0-vortex, a vortex
and an antivortex in the center of the square [11]. Besides
the central vortex we only observe vortices in the square
on the diagonals and on the axes close to the center at the
Tc(H) phase boundary, which is the lowest eigenvalue of
the LGL equation (1). Since the LGL equation is a linear
equation, it is necessary that the solutions for a square

Fig. 2. The square is shown for a field of 5.5Φ/Φ0 . The fig-
ure at the left shows the density of the order parameter |Ψ |2.
Dark regions indicate a low density of the order parameter |Ψ |.
The figure at the right shows the super currents. The vorticity
at this field is three and is generated by four vortices on the
diagonals and one antivortex in the center. Both figures are a
zoom of the central region of the structure. The square has a
side that is 1/16 of the full square.

have the same C4 symmetry as the given problem. There-
fore vortices on the diagonals and axes are always present
in quartets as for example in Figure 2. Consequently the
total vorticity of a state, which is given by the sum of the
vorticity of the different vortices, can only change by a
multiple of four within one irrep.

It is quite surprising that at certain values of mag-
netic field we find a solution with an antivortex in the
center of the square, since an antivortex carries a flux
quantum Φ0 with the opposite orientation of the applied
flux. Nonetheless the spontaneous generation of a quar-
tet of vortices and an antivortex in the center is preferred
above the generation of a giant 3Φ0-vortex in the cen-
ter. This can be understood from the symmetry require-
ments and the fact that giant vortices in bulk material
carry an energy proportional to the square of the number
of flux quanta. However, we observe that the area of the
vortex-antivortex pattern is very small (see Fig. 2) at the
Tc(H) phase boundary, this means that the vortices and
antivortex form an ensemble carrying three Φ0.

Increasing the aspect ratio from one removes the an-
tivortex from the center and replaces it by an ensemble
of a vortex in the center and two antivortices next to it
at a close distance. Moreover at aspect ratio ζ = 1.02 no
antivortices can be observed in the rectangle anymore. In
addition vortices can be found in the rectangle on the
longest axis and on the bisectors of the corners at the
Tc(H) phase boundary (see Fig. 3).

When examining the Tc(H) phase boundary more
closely, we observe that the Tc(H) phase boundary is con-
structed out of a repeating sequence of branches belonging
to the different irreps. Starting from zero at zero magnetic
field, the vorticity increases with one at every cusp where
the lowest solution of the LGL equation switches between
branches belonging to different irreps. However, we notice
with increasing aspect ratio ζ that the oscillations at the
Tc(H) phase boundary become smaller, until they become
unnoticeable. Additionally the slope of the Tc(H) phase
boundary is lowered with increasing aspect ratio.
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Fig. 3. The figure shows the density of the order parame-
ter |Ψ |2 in a rectangle with aspect ratio 4/3 and a magnetic
field corresponding to 9.5Φ/Φ0. Dark regions indicate a low
density of the order parameter |Ψ |2. A pair of vortices is located
symmetrically on the long axis and a quartet is positioned on
the bisectors of the four corners.

Eventually the phase boundary evolves into a parabolic
field dependence for the largest aspect ratios, analogous
to the solution for a line [15].

Following the evolution of the vortex patterns in the
rectangle within one irrep and not along the Tc(H) phase
boundary, which always corresponds to the lowest eigen-
value, we observe that the vortices enter by two through
the middle of the longest sides, and naturally by four in
the case of the square. Then they move towards the cen-
ter with increasing field, where they form a giant vortex
together with the vortex already present in the center de-
pending on the irrep. In the case of the square the giant
vortex then splits again with increasing field and the indi-
vidual vortices move along the diagonals. In the case of the
rectangle the giant vortex also splits into individual vor-
tices, whereafter they first move along the long axis with
increasing field. Eventually two pairs of vortices will melt
at the two cross points of the bisectors with the long axis.
After that they split again and move along the bisectors
towards the corners of the rectangle.

With increasing magnetic field more and more vortices
will be positioned on the bisectors at the Tc(H) phase
boundary. These vortices will be pushed towards the cor-
ners of the rectangle, however the vortices can not come
too close to the corners since the order parameter |Ψ |2 is
higher at the corners, as expected from the studies of nu-
cleation of superconductivity at wedges [26–31]. We also
note that the magnetic field at which vortices will start
to position themselves on the bisectors rises fast with in-
creasing aspect ratio. So at the Tc(H) phase boundary
the vortex patterns for the larger aspect ratios will be
predominantly one dimensional.

2.2 Sample characteristics

To investigate experimentally the crossover square-
rectangle, four rectangles with different aspect ratio

Fig. 4. SEM micrograph (a) of a Al square with lateral di-
mensions 2 × 2 µm2 (ζ=1) and of a rectangle with lateral di-
mensions of (b) 1.73 × 2.31 µm2 (ζ=4/3), (c) 1.41 × 2.83 µm2

(ζ=2) and (d) 1 × 4 µm2 (ζ=4).

(ζ=1,4/3, 2 and 4) were studied in this paper. They were
all evaporated in the same run. The four structures have
the same area of S = 4 µm2. A SEM micrograph of
the studied samples is shown in Figure 4. The rectangles
with aspect ratio ζ=1, 4/3, 2 and 4 have dimensions of
2×2 µm2, 1.73×2.31 µm2, 1.41×2.83 µm2 and 1×4 µm2.
The thickness τ is 39 nm and the coherence length of the
co-evaporated reference sample is 156 nm.

The samples were prepared by thermal evaporation of
Al on a SiO2 substrate. The patterns are defined by elec-
tron beam lithography before the evaporation of the Al
film. After the deposition, the desired structures are ob-
tained with a lift-off procedure. Wedge shaped current and
voltage leads with an opening angle of Γ = 15◦ and with
a narrow width of the interface between the rectangles
and the current leads were used in order to minimize their
influence on the superconducting properties of the rectan-
gles [14,32]. The Tc(H) phase boundary is measured by
four-point resistance measurements using a lock-in ampli-
fier. An ac transport current of 0.1 µA is sent through the
two current leads (horizontal contacts in Fig. 4). In order
to construct the H−T phase diagram a set of R(H) mag-
netoresistance curves are measured at various tempera-
tures. The phase line is in a next step extracted from the
data using a certain resistance criterion Rc.

2.3 Resistive transitions

The resistive transitions of the mesoscopic rectangles with
different aspect ratio are presented in Figure 5 for differ-
ent magnetic fields. The square and the two rectangles
with the smallest elongation show a resistive transition
composed of two distinct parts: a broad transition at high
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Fig. 5. Resistive transitions R(T ) for (a) a square (ζ = 1) and a rectangle with (b) ζ = 4/3, (c) ζ = 2 and (d) ζ = 4 in different
magnetic fields. The dashed lines show the resistance criteria used to determine the Tc(H) phase boundaries.

temperatures followed by a sharp drop. This is very sim-
ilar to previous experimental results on a mesoscopic tri-
angle [14]. It was shown that the two different regimes are
arising from the difference in critical field of the contact
leads and of the structure. The nucleation of supercon-
ductivity occurs first in the wedge shaped contacts and is
then followed by the nucleation in the rectangle itself.

Small resistance anomalies, characterized by an over-
shoot resistance above the value of the resistance in the
normal state Rn, are seen. They are created by the pres-
ence of a superconducting/normal interface around the
voltage contacts due to the difference of critical tempera-
ture in the different parts of the sample [14].

Figure 5d shows the resistance transition of a meso-
scopic rectangle with ζ = 4. The rectangle with the small-
est aspect ratio exhibits a different temperature depen-
dence of the resistance compared to the other rectangles
and to the triangle with the same current and voltage
contacts presented in reference [14]. No sharp transition
in the lower part of the R(T ) curve is observed except for
the curve at 3.5 mT where a sharper transition can be
seen starting at approximately 3 Ω. However, this effect
is much weaker than in the previous samples. Contrary to
the curve at 3.5 mT, the one measured at 4 mT shows the
opposite behavior. Below ∼3 Ω, the transition broadens.
The reason for this deviating behavior is more easily un-
derstood from the H−T phase diagram and will therefore
be discussed further down.

2.4 Phase boundary

To extract the phase boundary of the square from the
measured data, the resistance criterion of 2/3 Rn is used,
corresponding to the value where the slope of the resis-
tance curves starts to change. The constructed H − T
diagram is displayed in Figure 6 and is compared with
theoretical calculations (full line in Fig. 6). While previ-
ous transport measurements on a mesoscopic square [1,16]
showed a strongly oscillating Tc(H) dependence superim-
posed with a pronounced quadratic background, our re-
sults are in very good agreement with the theoretical pre-
dictions. Only a smaller coherence length ξ(0)=135 nm
was used. The second parameter S used to compare the
experimental and the theoretical data was found to be
within the error margin of the determined area from SEM
and AFM measurements. The main difference between the
presented experimental phase boundary and previous re-
ports is the shape and the size of the current and voltage
contacts that can be extremely invasive in mesoscopic su-
perconductors.

The experimental Tc(H) curve of the different rectan-
gles is presented in Figures 7, 8 and 9. The critical temper-
ature of the rectangles with ζ=4/3 (Fig. 7) and 2 (Fig. 8)
shows small oscillations superimposed with a linear depen-
dence of the magnetic field. They have an almost identi-
cal phase boundary as the square (see Fig. 6). Only very
small changes in the position of the cusps are observed.
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Fig. 6. Experimental Tc(H) phase boundary of a square.
The open squares represent the measured value using the
measured sample size S = 4 µm2 and the coherence length
ξ(0) = 135 nm. The full line is the theoretical curve (see Fig. 1).

Fig. 7. Experimental Tc(H) phase boundary of a rectangle
with ζ = 4/3. The open squares represent the measured value
using the measured sample size S = 4 µm2 and the coherence
length ξ(0) = 132 nm. The full line is the theoretical curve (see
Fig. 1).

The magnetic field value where the vorticity changes from
L to L + 1 is slightly delayed when changing the value
of ζ from one. No significant change in the slope and the
amplitude of the oscillations could be observed.

A very good agreement between the experimental and
the theoretical curves, as well as for the position of the
cusp as for the amplitude of the oscillations, is obtained
for these two rectangles. Even a large deformation of
the square (ζ = 2) gives negligible changes in the phase
boundary. It seems that the angle of the corners and the
area S play the most important roles in the determination
of the phase boundary. It was shown theoretically that al-
ready a small change in the aspect ratio would change the
vortex configuration at the nucleation of superconductiv-
ity. These different vortex arrangements however do not
affect substantially the lowest Landau levels.

For a rectangle with aspect ratio ζ = 4, the phase
boundary (Fig. 9) is strongly transformed compared to
the case of the square. The oscillations are hardly seen
and the position of the first vortex entry is delayed to

Fig. 8. Experimental Tc(H) phase boundary of a rectangle
with ζ = 2. The open squares represent the measured value
using the measured sample size S = 4 µm2 and the coherence
length ξ(0) = 125 nm. The full line is the theoretical curve (see
Fig. 1).

Fig. 9. Experimental Tc(H) phase boundary of a rectangle
with ζ = 4. The open squares represent the measured value
using the measured sample size S = 4 µm2 and the coherence
length ξ(0) = 140 nm for a resistance criterion of 40% of Rn.
The full line is the theoretical curve (see Fig. 1).

Φ/Φ0
∼= 3.7 (left dotted line in Fig. 9) instead of the value

of Φ/Φ0
∼= 2 found for a square. A good agreement be-

tween the experimental and the theoretical curves is ob-
tained for a resistance criterion of 40% of Rn.

Increasing further the elongation will lead to a delay of
the entry of the first vortex in the sample so that the phase
boundary will display a parabolic dependence on the field
as long as the first vortex is not entering the sample. For
an infinitely long rectangle with finite width, the case of
a thin wire or film is recovered.

3 Hybrid structures

3.1 Introduction

Hybrid superconductor/ferromagnet structures have re-
cently attracted a considerable attention. The interplay of
superconductivity and magnetism has mainly been stud-
ied on superconducting thin films with arrays of magnetic



476 The European Physical Journal B

Fig. 10. Scanning electron micrographs of the disk and loop
with magnetic dots.

dots [20,21,33], with the emphasis on the pinning proper-
ties of these structures.

We have investigated the nucleation of superconduc-
tivity in individual superconducting structures with a sin-
gle perpendicularly magnetized magnetic dot. A super-
conducting disk with a magnetic dot on the top and a
superconducting loop enclosing a dot were studied. The
dot is separated from the superconducting disk by an in-
sulating spacer layer in order to avert proximity effects
and ensure that the interaction between superconductiv-
ity and magnetism in both samples has purely magnetic
character [34].

The superconducting Tc(H) phase boundaries were ob-
tained by transport measurements, applying the magnetic
field perpendicularly to the surface of the samples. Both
Tc(H) phase boundaries are asymmetric with respect to
the polarity of the applied magnetic field, with the max-
imum critical temperatures attained for the finite values
of the external field. However, even though the sizes and
magnetization of dots were identical in both samples, the
maximum critical temperature of the disk has been ob-
served for an applied magnetic field parallel to the mag-
netization of the dot (hereafter positive applied fields),
whereas the loop exhibits the maximum critical tempera-
ture for an applied magnetic field antiparallel to the mag-
netization of the dot (hereafter negative applied fields).

3.2 Sample fabrication and properties

The samples were fabricated on SiO2 substrates by elec-
tron beam lithography and lift-off technique. The prepa-
ration of the samples involved three subsequent phases,
in which the contacts and alignment markers, supercon-
ducting structures and magnetic dots, respectively, were
patterned and thermally grown. For the details of the fab-
rication procedure, please refer to [35] The thickness of Al
superconducting disk and loop is 60 nm, the radius of the
disk is 1.08 µm, whereas the inner and outer radii of the
loop are 0.55 µm and 1.05 µm, respectively. Scanning elec-
tron micrographs of the samples are shown in Figure 10.

The dots with the radius of 0.27µm consist of 10 bilay-
ers of Co and Pd with the individual thicknesses of 0.4 nm
and 1 nm, respectively, on 2.5 nm Pd buffer layer. This
multilayer is know to provide a complete remanence and
nearly perfect squareness of the hysteresis loop [33,36].
Figure 11 shows the room temperature hysteresis loop of
the co-evaporated Co/Pd reference film obtained by the

Fig. 11. Hysteresis loop of the co-evaporated Co/Pd reference
film and the spatial profile of the stray field generated by the
magnetic dot, obtained by magnetostatic calculations.

MOKE measurements (upper figure) and the calculated
spatial profile of the stray field (lower figure). Prior to the
measurements, the dots were saturated in the magnetic
field of 500 mT. As the externally applied field did not
exceed 30 mT, the magnetization of the dots remained
unaffected during the experiment.

3.3 Results

The onset of superconductivity in the structure was
studied by measuring the superconducting Tc(H) phase
boundary. The phase boundary was found resistively, from
four-point transport measurements, in a cryogenic setup
at temperatures down to 1.11 K, with the temperature
and field resolution of 0.5 mK and 5µT, respectively. The
transport current with the effective value of 100 nA and
frequency 27.7 Hz was used, whilst the signal-to-noise ra-
tio was being improved by a lock-in amplifier.

Figure 12 displays resistive transitions of the disk
which are strongly asymmetric with respect to the polarity
of an applied field. The mean field transition temperature,
defined conventionally as the temperature at which the re-
sistance is Rn/2, in the applied magnetic field of +2 mT
is equal to the transition temperature in −1 mT. This fea-
ture of the resistive transitions is reproduced for higher
fields, as well. More importantly, the critical temperature
in zero applied field is not the maximum critical tempera-
ture of the structure. The structure attains the maximum
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Fig. 12. R(T ) transition in a constant applied magnetic
field. Filled symbols indicate transitions in the positive applied
fields, whereas open symbols present transition in the negative
magnetic fields.

critical temperature when exposed to the magnetic field
of +0.3 mT. The difference between the maximum critical
temperature Tcm and zero-field critical temperature Tc0 is
approximately 2.5 mK.

Figure 13 shows the Tc(H) phase boundaries of the
disk (upper figure) and the loop (lower figure). Dot-
ted curves are experimentally obtained phase boundaries,
solid lines present theoretical fits, whereas the dashed line
in the upper figure shows the theoretical phase boundary
of the disk without the dot.

The superconducting phase boundaries exhibit a pro-
nounced field-polarity dependence. The maximum critical
temperatures are attained for finite values of the applied
magnetic field. The direction of the shift of Tc(H) phase
boundary near Tc0, for a fixed orientation of the magne-
tization m, depends upon the intensity of the stray field
of the magnetic dot, that is, upon the intensity of m. The
shift can come about as a result of the cancellation of
the total flux generated by the magnetic dot, or due to a
change in the kinetic energy of the superconducting con-
densate in the disk, accompanied by a switch in the vor-
ticity by one. The former shifts the phase boundary in the
direction opposite to the magnetization of the dot and
the maximum critical temperature is observed for a finite
negative applied field, whereas the latter provides that the
maximum critical temperature is achieved for a finite ap-
plied field parallel to the magnetization of the dot, that is
for a finite positive field. Which of these competing effects
prevails depends strongly upon the intensity of magneti-
zation of the magnetic dot, as well as upon the parameters
of the superconducting structure.

The experimental data have been analyzed by using
the GL theory. Given that the samples are thinner than
the coherence length ξ(T ), as well as that boundaries of
the samples impose the axial symmetry, it is possible to
reduce the dimensionality of the problem to the 1D case
in the vicinity of the phase boundary and express the di-
mensionless order parameter ψ(r, φ) using the cylindrical

Fig. 13. R(T ) transition in a constant applied magnetic
field. Filled symbols indicate transitions in the positive applied
fields, whereas open symbols present transition in the negative
magnetic fields.

coordinate system as

ψ(r, φ) = f(r) exp(−iLφ) , (4)

where f(r) is the modulus of the order parameter,
L stands for the winding number (vorticity). The super-
conducting Tc(H) phase boundary of the loop has been
obtained assuming that the modulus of the order parame-
ter is constant, whereas for the disk the following the trial
function for the modulus of the order parameter has been
used,

f(r) = p1 · exp
(
−q r

2

R2

)
·
( ( r

R

)L

+ p2

( r
R

)L+1

+ p3

( r
R

)L+2

+ p4

( r
R

)L+3
)
, (5)

where p1, p2, p3 and p4 are the variational parameters,R is
the radius of the disk, whereas q is found from the vacuum
boundary condition for the order parameter (f ′(R) = 0)

q =
L+ p2(L + 1) + p3(L+ 2) + p4(L + 3)

2(1 + p2 + p3 + p4)
. (6)

Using equations (4) and (5) the GL energy is found as
a function of the variational parameters [37]. The values
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of the variational parameters are calculated by minimiz-
ing the GL energy. Comparing the energies of states with
different L the superconducting Tc(H) phase boundary of
the disk is found. The magnetization of the dot m has
been chosen to provide the best qualitative and quantita-
tive agreement between the theory and the experiment in
the vicinity of Tc0.

4 Conclusions

The superconducting/normal Tc(H) phase boundary for
samples of different geometries and for the superconduc-
tor/ferromagnet hybrids have been studied experimen-
tally and theoretically. Rectangles with small deforma-
tion compared to the square give only minor difference
in H − T phase diagrams. Major differences are observed
for strongly elongated rectangles where the crossover from
a linear to a parabolic field dependence of the critical tem-
perature could be seen.

We were able to find a good agreement between our
experimental Tc(H) data and the theoretical model, based
on the linearized GL theory, for all studied samples.

It has been demonstrated that hybrid superconduc-
tor/ferromagnet structures have the Tc(H) phase bound-
ary which is shifted along the field axis. As a result, the
maximum critical temperatures of the structures are at-
tained for a finite value of the applied magnetic field. The
direction of the shift in the Tc(H) phase boundary is not
caused by a simple compensation effect of the flux gener-
ated by the dot, but strongly depends on parameters of
the dot and superconducting sample.
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